翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

involutory matrix : ウィキペディア英語版
involutory matrix
In mathematics, an involutory matrix is a matrix that is its own inverse. That is, multiplication by matrix A is an involution if and only if A2 = I. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any nonsingular matrix multiplied by its inverse is the identity.〔.〕
==Examples==
The 2 × 2 real matrix \begina & b \\ c & -a \end is involutory provided that a^2 + bc = 1 .〔Peter Lancaster & Miron Tismenetsky (1985) ''The Theory of Matrices'', 2nd edition, pp 12,13 Academic Press ISBN 0-12-435560-9〕
One of the three classes of elementary matrix is involutory, namely the ''row-interchange elementary matrix''. A special case of another class of elementary matrix, that which represents multiplication of a row or column by −1, is also involutory; it is in fact a trivial example of a signature matrix, all of which are involutory.
Some simple examples of involutory matrices are shown below.
:
\begin
\mathbf=\begin
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end
; &
\mathbf^=\begin
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end
\\
\\
\mathbf=\begin
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end
; &
\mathbf^=\begin
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end
\\
\\
\mathbf=\begin
+1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end
; &
\mathbf^=\begin
+1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end
\\
\end

where
:I is the identity matrix (which is trivially involutory);
:R is an identity matrix with a pair of interchanged rows;
:S is a signature matrix.
Clearly, any block-diagonal matrices constructed from involutory matrices will also be involutory, as a consequence of the linear independence of the blocks.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「involutory matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.